
Non-asymptotic approach to ultrasonic attenuation in nitroethane–isooctane critical mixture

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2002 J. Phys.: Condens. Matter 14 13429

(http://iopscience.iop.org/0953-8984/14/49/302)

Download details:

IP Address: 171.66.16.97

The article was downloaded on 18/05/2010 at 19:19

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/14/49
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 14 (2002) 13429–13439 PII: S0953-8984(02)52006-3

Non-asymptotic approach to ultrasonic attenuation in
nitroethane–isooctane critical mixture

D Madej and T Hornowski

Institute of Acoustics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland

E-mail: darek@spl.ia.amu.edu.pl

Received 2 August 2002, in final form 8 November 2002
Published 29 November 2002
Online at stacks.iop.org/JPhysCM/14/13429

Abstract
The acoustic velocity and absorption have been measured in a nitroethane–
isooctane mixture at critical composition in the frequency range 2–40 MHz
and for temperatures of 31–43 ◦C. The experimental data have been analysed in
terms of the Ferrell–Bhattacharjee dynamic scaling theory with the appropriate
crossover corrections and recently developed Folk–Moser renormalization
group theory. The shear viscosity of the studied mixture has been also measured
to enable this analysis. A good agreement with theoretical predictions has been
obtained.

1. Introduction

Sound propagation in binary mixtures provides important information about the dynamical
behaviour near the critical point. When the mixture gradually approaches the critical point, the
measured absorption coefficient grows rapidly and the rate of growth depends on the ultrasonic
wave frequency. This behaviour can be explained in terms of the coupling of the acoustic
field with the concentration fluctuations in critical mixtures. Due to the lagged response of
the concentration fluctuations the energy of the acoustic wave is dissipated. Because of the
absence of strain the fluids exhibit sharp phase transitions and therefore are excellent media
for testing the theories of critical phenomena.

There are several theoretical models predicting the sound propagation in binary mixtures
near the critical point of mixing [1–7]. In all of them sound attenuation per wavelength αλ is
expressed by the same general equation

αλ = π A(ε)I (ω∗), (1)

or

αλ/α
c
λ = I (ω∗). (2)

However, the models differ in the form of the critical amplitude A(ε) and the scaling
function I (ω∗). The reduced temperature ε and reduced frequency ω∗ are defined as follows:
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ε = T − Tc/Tc, ω∗ = ω/ωD where ωD is a characteristic frequency of the concentration
fluctuations that can be approximated by the Stokes–Einstein expression [8]:

ωD = 2Dξ−2 = kB T

3πηξ3
= kB T

3πη0ξ
3
0

ε(3+xη)ν . (3)

Here, D is the mass diffusion coefficient, ξ is the correlation length, η is the shear viscosity and
kB is the Boltzmann constant. In equation (3) the power laws ξ = ξ0ε

−ν and η = η0ε
−xη were

used. As follows from equations (1) and (2) the absorption coefficient measured in different
systems for different temperatures and frequencies, divided by A(ε) or its value at the critical
point αc

λ, should scale along a universal curve—the scaling function I (ω∗).
Kawasaki [1] and Mistura [2] developed the mode-coupling formalism which helped

understand the physical mechanism underlying the critical anomaly of sound attenuation in
binary mixtures and pure fluids, but their predictions did not agree with experimental results,
especially for high values of the reduced frequency (ω∗ > 10) [9]. Shiwa and Kawaski [5]
attempted to eliminate this discrepancy by taking into account higher order mode couplings.
However, our experiments showed that their approach also leads to unsatisfactory results [10].
The most successful description turned out to be the dynamic scaling theory developed by
Ferrell and Bhattacharjee [6, 7] whose particular merit is the ability to predict sound attenuation
at the critical point. This theory seems to correctly describe experimental results in a broad
range of reduced frequencies [8, 10, 11].

Unfortunately, all theories mentioned above are related to the asymptotic (near-critical)
region in which the universal power laws describing various thermodynamical quantities are
valid [12], and it is difficult to determine the temperature interval in which the theoretical
predictions might apply. Ferrell and Bhattacharjee [13] proposed a simple correction
procedure—based on the use of an effective reduced temperature—to clearly reveal the
underlying universal scaling. Recently, Folk and Moser [14–17] have proposed a new model
of sound propagation in pure fluids and critical mixtures. They analysed non-asymptotic
transport coefficients (viscosity, mass diffusion and thermal diffusion) and sound propagation
in the nonasymptotic limit using renormalization group theory.

In this paper the approach proposed by Ferrell and Bhattacharjee with appropriate
crossover corrections, and the Folk–Moser theory,are compared with our ultrasonic attenuation
measurements in the nitroethane–isooctane critical mixture.

2. Theory

2.1. The Ferrell–Bhattacharjee dynamic scaling theory

Bhattacharjee and Ferrell developed a theory for sound propagation in critical mixtures, which
is based on the temperature fluctuations associated with propagation of the sound wave. The
ultrasound attenuation is caused by a lagged response of the critical concentration fluctuations
to the temperature variations in the sound wave. This effect is described by the adiabatic
coupling constant g [18]:

g = ρCP [dTc/dP − (∂T/∂ P)s ], (4)

where dTc/dP is the change in the critical temperature, Tc, with pressure, P; ρ is the density
of the mixture, CP is the heat capacity at constant pressure and S is the entropy. Equation (4)
can be expressed in the following form, which is better suited to calculate the constant g [22]:

g = −TαPb +
T αPc

CPc
CPb. (5)
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Here, αPc and αPb stand for the critical and noncritical (background) part of the thermal
expansion coefficient respectively, and CPb is the background part of the heat capacity at
constant pressure. In the critical region, the heat capacity and the thermal expansion coefficient
are given by the well known formulae:

CP = CPcε
−ᾱ + CPb, (6)

αP = αPcε
−ᾱ + αPb, (7)

where ᾱ = 0.11 is the critical exponent. The Ferrell–Bhattacharjee theory predicts a linear
relation between α/ f 2 and f −1.06 at the critical point:

α(Tc)

f 2
=

[
π2ᾱg2u2CPc

2zνTcCPb
2

(
ω0

2π

) ᾱ
zν
]

f −(1+ᾱ/zν) +
αb

f 2
= S f −1.06 + b (8)

where αb/ f 2 describes the classical absorption caused by the viscosity and the thermal
conductivity, u stands for ultrasound velocity, ω0 is the amplitude of a characteristic frequency
ωD = ω0ε

zν and zν = 1.93. Equation (8) can be used to determine the g constant from
acoustic measurements.

The critical amplitude in the dynamic scaling theory takes the form

A(ε) = πᾱg2u2CPc

2zνTcC2
Pb

ε−ᾱ = A0ε
−ᾱ , (9)

while the approximate form of the scaling function IF B(ω∗) is given by the equation

IF B(ω∗) = (ω∗)−ᾱ/zν F(ω∗), (10)

where

F(ω∗) = 3

π

∫ ∞

0
dx

x

(1 + x)2

ω∗x(1 + x)
1
2

x2(1 + x) + ω∗2 . (11)

Combining equations (8)–(10) one obtains for the scaling of the attenuation coefficient

αλ/α
c
λ = F(ω∗). (12)

All the above equations were derived assuming that the temperature was close to Tc.
However, the acoustic measurements are usually carried out in the so-called crossover
temperature region, which lies between the truly critical and noncritical regimes. As a remedy
to this problem Ferrell and Bhattacharjee [13] recently proposed a simple correction procedure,
which introduces an effective reduced temperature εeff according to the equation

εeff = ε[1 + β̄(κ/qc)]
1/2, (13)

where β̄ = 1.18, κ = ξ−1 = ξ0ε
0.65, ξ is the correlation length and qc is the characteristic

noncritical crossover wavenumber.

2.2. The Folk–Moser renormalization group theory

Recently, an extensive analysis of sound propagation both in pure fluids and critical
mixtures has been performed by Folk and Moser [14–17]. They studied non-asymptotic
transport coefficient (viscosity, diffusion and thermal conductivity) and sound mode within
the dynamical equations of model H ′ of the renormalization group theory [19]. The result of
their analysis related to the sound attenuation can be written as

αλ

αc
λ

= IF M(ω∗) = Im[F+(v(ε̄), w̄(ε̄))]

π/16
, (14)
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where function F+ takes the form

F+(v,w) = −1

4

[
v2

v+v−
ln v +

1

v+ − v−

(
v2−
v+

ln v− − v2
+

v−
ln v+

)]
, (15)

v± = v

2
±

√
v

2

2
+ iw̄, (16)

v(ε, ε̄) = ξ−2(ε)

ξ−2(ε̄)
, (17)

w̄(ε̄) = ω

2eff(ε̄)ξ−4(ε̄)
, (18)

eff (ε̄) = (ε̄)(1 − w2
3(ε̄)). (19)

The effective reduced temperature ε̄ can be determined from the matching condition:

ε8 +

(
2ωξ4

0

(ε̄)(1 − w2
3(ε̄))

)2

= ε̄8. (20)

The Onsager coefficient  and parameter w3 introducing an additional timescale appear
in the equations for the coefficient of diffusion, derived by Folk and Moser [20]:

D(ε) = (ξ−1
0 εν)2(ε)

(
1 − f 2

t

16

)
, (21)

and the shear viscosity:

η(ε) = kB T ξ0

4πεν(ε)F2(ε)

(
1 − f 2

t (ε)

36(1 − w2
3(ε))

)
, (22)

where ft is the mode coupling parameter between the order parameter and transverse
momentum density.

The temperature dependence of parameters , w3 and ft can be obtained from the flow
equations:

ε
d

dε
= −3ν

4
(ε) f 2

t (ε), (23)

ε
dw3

dε
= 3ν

8
w3(ε) f 2

t (ε), (24)

ε
d ft

dε
= −ν

3
ft (ε)

(
1 − 3

4
f 2
t (ε) − f 2

t (ε)

24(1 − w2
3(ε))

)
. (25)

The main advantage of the Folk–Moser theory is due to the fact that equations (21) and (22)
are non-asymptotic which means that the theory is valid both in the asymptotic (near-critical)
and non-asymptotic regions.

3. Experiment

A mixture of nitroethane and isooctane is a system with the upper critical temperature of mixing
Tc = 30.05 ◦C and the critical concentration xc = 0.4306 mole fraction of isooctane [21]. The
chemicals (Aldrich 99.8%) were used without further purification. The sample was prepared
by weight with a precision �x = 0.001 mole fraction of isooctane.

The ultrasound velocity was measured in the temperature range 32–44 ◦C using the
echo-overlap method developed by Papadakis [23]. The experimental error was about
�u = 0.2 m s−1. The absorption coefficient was determined for six frequencies: 2, 9.6,
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Figure 1. Temperature dependence of the velocity of the ultrasonic wave in the nitroethane–
isooctane system. The solid curve represents a linear fit to experimental data.

13, 15.3, 19.1 and 38.4 MHz in the temperature range 31–42 ◦C using the pulse method by
measuring the change in the amplitude of the received pulse as the receiving transducer was
moved over a known distance. The relative error of absorption coefficient did not exceed 5%.
The MATEC apparatus was used to perform these measurements. A detailed description of the
experimental set-up can be found in [10]. All measurements were started at a temperature above
Tc, and then the temperature was gradually decreased to a critical value. The measurements
for 2 MHz and for the frequency range 9.6–38.4 MHz were carried out in different sample
cells. However, in the first sample cell we were unable to obtain satisfactory signal when the
transducer was driven on the first overtone (6 MHz). As a result there is a gap between 2 and
9.6 MHz in our frequency measurements.

It was found that the ultrasonic wave velocity decreases in a linear way with increasing
temperature according to the relation u = 1220.8 − 3.9 × T (figure 1). No dispersion was
observed in the nitroethane–isooctane mixture [26]. The lack of critical effects close to Tc

was consistent with the theoretical predictions for high-frequency velocities in binary critical
mixtures [24].

Figure 2 shows the temperature dependence of the absorption coefficient αλ for six
frequencies. This dependence appears typical for a critical mixture: absorption increases
rapidly as the system approaches the critical point. The rate of growth depends on the frequency
of the ultrasonic wave: the lower the frequency the quicker the growth of absorption.

The shear viscosity was measured using a Höppler viscometer in the temperature range
305–325 K. The flow times were measured with a precision of 0.1 s and the temperature
was controlled with an accuracy up to 0.02 K. The viscosity η is characterized by the critical
exponent xη,

η = η0ε
−xη , (26)
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Figure 2. Temperature dependence of absorption coefficient αλ in nitroethane–isooctane critical
mixture.

where η0 is the background viscosity described by an empirical Arrhenius equation:

η0(T ) = Aη exp

(
Bη

T

)
. (27)

Substituting equation (27) into (26) and fitting the resulting equation to the viscosity data
(figure 3), one obtains Aη = (0.0198 ± 0.0014) mPa s, Bη = (996 ± 27) K, and
xη = 0.0426 ± 0.0024 which is very close to the theoretical value xη = 0.041 predicted
by the renormalization group theory. Using the above values one obtains from equation (27)
η0 = (0.538 ± 0.017) mPa s for the background viscosity in a nitroethane–isooctane mixture.

4. Analysis and discussion

4.1. Ferrell–Bhattacharjee dynamic scaling theory

The first step in analysing experimental data in the light of Ferrell–Bhattacharjee theory is
to determine the background absorption from equation (8). Figure 4 shows the results of
a linear fit of equation (8) to experimental data, which leads to the values of the slope
S = 2.8 × 10−5 m s−0.94 and the intercept b = 44 × 10−15 s2 m−1. Since αb

λ = b f u,
one obtains αb

λ = 4.84 × 10−11 f . Using ρ = 813 kg m−3, αPc = 0.125 × 10−4 K−1,
αPb = 12.7 × 10−4 K−1, CPc = 181 J kg−1 K−1 and CPb = 1750 J kg−1 K−1 [25] it is also
possible to determine the value of g from slope S in equation (8),

gac =
√√√√ S2zνTcC2

Pb

π2ᾱuCPc(
ω0
2π

)
ᾱ
zν

= ±(0.354 ± 0.029), (28)

and compare it with the theoretical value calculated from equation (5): gth = −0.348.
The amplitude of the characteristic frequency ω0 = 5.83 × 1010 Hz was determined from

equation (3) taking ξ0 = 2.42 × 10−10 m [26].
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Figure 3. Temperature dependence of the shear viscosity in the nitroethane–isooctane system. The
curve represents the fitting function given by equation (26) with the background viscosity described
by an Arrhenius form (equation (27)).

Figure 4. Dependence of αc/ f 2 on f −1.06 in the critical mixture of nitroethane–isooctane. The
solid line represents a linear fit of equation (8) to experimental points.

The absorption coefficient α
exp
λ measured is a sum of the critical part which enters

equations (1) and (2) and the background part αb
λ which was determined earlier. Thus we

have

αλ = α
exp
λ − αb

λ. (29)
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Figure 5. αλ/π A(εeff) versus ω∗ = ω/ω0ε
zν
eff in the nitroethane–isooctane system. The solid

curve represents the scaling function IF B (ω∗) given by equation (10).

All quantities needed to calculate the critical amplitude from equation (9) are known and lead
to A0 = 2.49 × 10−3.

The last step is to determine the effective temperature from equation (13). The value of
qc can be estimated from the dynamic light scattering results according to the relation [27]

Q−1
0 = 1

2 e4/3(q−1
c + q−1

D ), (30)

where qD is the Debye wavenumber. Inserting Q0 = 6.36×108 m−1 [28] and qD/qc = 1.7 [29]
into equation (30) one obtains qc = 1.92 × 109 m−1. The difference between εeff and ε is
negligible close to Tc but becomes noticeable far from the critical point. For example for
T − Tc = 30.42 ◦C, εeff = 0.1205 in comparison with ε = 0.1.

Figure 5 shows the plots of αλ/π A(εeff) versus reduced frequency ω∗ = ω/ω0ε
zν
eff . The

solid curve represents the scaling function given by equation (10). Figure 5 illustrates a good
agreement between the experimental data and the Ferrell–Bhattacharjee theoretical scaling
function over the whole reduced frequency range. This confirms the correctness of the
expression for the critical amplitude (equation (9)) as well as the value of ω0 determined
from viscosity measurements.

4.2. The Folk–Moser renormalization group theory

The theory of Folk and Moser predicts the attenuation data to scale according to equation (2).
In order to confirm their predictions it is necessary to calculate the scaling function from
equations (15)–(20). As the first step one has to find the initial values of (ε0), w3(ε0)

and ft (ε0) by fitting equations (21) and (22) to the experimental data of shear viscosity. As
the temperature dependence of the background part of viscosity is not described within the
renormalization group theory, one has to correct the experimental data using the following
expression [16]:

ηcorr(ε) = ηexp(ε) − η0(ε) + η0(0). (31)
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Figure 6. Temperature dependence of shear viscosity in the nitroethane–isooctane mixture.
The solid curve represents equation (22) with initial values (ε0) = 6.2085 × 10−28 m4 s−1,
ft (ε0) = 1.154 31 and w3(ε0) = 0.755.

By choosing ε0 = 0.068 641 far away from the critical point, where η(ε0) = 0.547 mPa s
according to equation (27), one obtains from equation (22) the relationship between η(ε0), and
the initial values of the parameters (ε0), ft (ε0) and w3(ε0):

η(ε0) = kB T ξ0

4πεν
0 (ε0) f 2

t (ε0)

(
1 − f 2

t (ε0)

36(1 − w2
3(ε0))

)
. (32)

The value of mass diffusion coefficient can be determined from

D(ε0) = 1
2ω0ξ

2
0 ε

ν(z−2)
0 , (33)

which leads to D(ε0) = 2.9 × 10−10 m2 s−1. By inserting this value into equation (21) one
obtains the relationship between D(ε0) and the initial values of the parameters (ε0), ft (ε0)

and w3(ε0):

D(ε0) = (ξ−1
0 εν

0 )2(ε0)

(
1 − f 2

t (ε0)

16

)
. (34)

Then it is possible to determine the initial values of (ε0), ft (ε0) and w3(ε0) by fitting the set
of equations (32) and (34) to the experimental data.

Figure 6 shows the dependence of shear viscosity on reduced temperature in the
nitroethane–isooctane mixture. The experimental data were corrected according to
equation (31). The solid curve represents the Folk–Moser theoretical function given by
equation (22) with initial values (ε0) = 6.2085 × 10−28 m4 s−1, ft (ε0) = 1.154 31 and
w3(ε0) = 0.755. The temperature evolution of parameters (ε0), ft (ε0) and w3(ε0) was
obtained from the flow equations (equations (23)–(25)).

All quantities needed to determine the scaling function from equations (15)–(20) are
known. Figure 7 shows the dependence of αλ/α

c
λ on the reduced frequency in the nitroethane–

isooctane critical mixture. The solid curve represents the Folk–Moser scaling function
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Figure 7. Dependence of αλ/αc
λ on the reduced frequency in the nitroethane–isooctane mixture.

The solid curve represents the Folk–Moser scaling function calculated from equation (14)
and equations (15)–(20), the dotted curve the Ferrell–Bhattacharjee scaling function given by
equation (11).

calculated from equation (14) and equations (15)–(20). Figure 7 also shows the scaling function
obtained from the theory of Ferrell and Bhattacharjee given by equation (11) and plotted as
a dotted curve. The differences between these two functions are small and rather difficult to
detect experimentally.

A good agreement between the experimental data and the scaling functions of Folk–
Moser theory (solid curve) and Ferrell–Bhattacharjee theory (dotted curve) was obtained in
the whole frequency range. However, for small reduced frequencies our experimental data
systematically exceed both theoretical scaling functions. These data correspond to attenuation
values measured away from the critical temperature where the critical absorption is comparable
with the background contribution. Thus, they are subjected to a greater experimental error.
Similar deviations were detected by other authors for a different system [11].

4.3. Conclusions

Using the experimental results of the absorption coefficient and velocity of an ultrasonic wave
in the nitroethane–isooctane critical mixture, as well as the data for the shear viscosity in
the same system, the theoretical predictions of the ultrasound propagation in binary critical
mixtures were analysed. Because the measurements were carried out in a wide temperature
range, it was necessary to take into account the so-called crossover corrections. This was done
using the effective reduced temperature approach proposed by Bhattacharjee and Ferrell and
the non-asymptotic theory of ultrasound propagation in binary mixtures developed by Folk
and Moser.

A good agreement between theoretical predictions and experimental results was obtained
in both cases in the whole range of reduced frequencies. Thus, the present results do not
permit us to decide in favour of one or the other theory, except that the analysis in terms of
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the Bhattacharjee–Ferrell approach seems to be somewhat simpler. Additionally, the adiabatic
coupling constant evaluated from the acoustic measurements agrees with the value obtained
from thermodynamic data of the nitroethane–isooctane system.
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